ARDSのCT所見で何となくrecruitabilityは予測できると感じていましたが、それを機械学習でやってみたという研究がありました。
Machine learning predicts lung recruitment in acute respiratory distress syndrome using single lung CT scan
Pennati F, Aliverti A, Pozzi T, et al. Ann Intensive Care. 2023;13(1):60.
Background: To develop and validate classifier models that could be used to identify patients with a high percentage of potentially recruitable lung from readily available clinical data and from single CT scan quantitative analysis at intensive care unit admission. 221 retrospectively enrolled mechanically ventilated, sedated and paralyzed patients with acute respiratory distress syndrome (ARDS) underwent a PEEP trial at 5 and 15 cmH2O of PEEP and two lung CT scans performed at 5 and 45 cmH2O of airway pressure. Lung recruitability was defined at first as percent change in not aerated tissue between 5 and 45 cmH2O (radiologically defined; recruiters: Δ45-5non-aerated tissue > 15%) and secondly as change in PaO2 between 5 and 15 cmH2O (gas exchange-defined; recruiters: Δ15-5PaO2 > 24 mmHg). Four machine learning (ML) algorithms were evaluated as classifiers of radiologically defined and gas exchange-defined lung recruiters using different models including different variables, separately or combined, of lung mechanics, gas exchange and CT data.
Results: ML algorithms based on CT scan data at 5 cmH2O classified radiologically defined lung recruiters with similar AUC as ML based on the combination of lung mechanics, gas exchange and CT data. ML algorithm based on CT scan data classified gas exchange-defined lung recruiters with the highest AUC.
Conclusions: ML based on a single CT data at 5 cmH2O represented an easy-to-apply tool to classify ARDS patients in recruiters and non-recruiters according to both radiologically defined and gas exchange-defined lung recruitment within the first 48 h from the start of mechanical ventilation.
PMID: 37405546
ChatGPTなど機械学習もかなり身近な時代になってきました。ちなみにこの論文ではPythonのscikit-learnが使われています。臨床で使いながらさらに学習を蓄積すればAUCの改善も見込まれるのでしょうか。複雑系における意思決定のサポートとして、機械学習の今後に期待しています。